BMI 713 / GEN 212

Lecture 4: Nonparametric Methods

- Wilcoxon Signed Rank Test
- · Wilcoxon Rank Sum Test
- Parametric vs nonparametric tests

September 30, 2010

Nonparametric Test

- Sometimes transforming the data (e.g., log) can make the data look more normal.
- A nonparametric test is robust to non-normality. This means the results are valid even when the distributions are highly non-normal.
 - Less sensitive to measurement error
 - Less sensitive to outliers
 - But loss of information
- Nonparametric tests is on the population median, not population mean
- · Median is robust to outliers

Nonparametric Test

- Assumptions in the *t*-test
 - normal distribution of the underlying population
 - or large sample size
- If the assumptions are not satisfied, the t-statistic does not follow a t-distribution closely.
- Parametric tests based on the assumption that the shape of the population is known
- Nonparametric tests fewer restriction on the underlying distribution of data; do not rely on the Central Limit Theorem
 - Uses ranks rather than actual values

Nonparametric Test

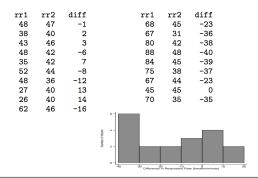
- So if there is a method that makes fewer assumptions, why not use that all the time?
- If the data really do follow normal distribution, there is loss of power!
- That means if H₀ is false, a larger sample size would be needed to provide sufficient evidence to reject it
- Steps are the same as before:
 - Specify the null and alternative hypotheses
 - Select a random sample of observations
 - Calculate a test statistic
 - Based on the value of the test statistic, either reject or do not reject H₀

Wilcoxon Signed-Rank Test

- · A nonparametric version of the paired t-test
- Like the paired t-test, this test focuses on the difference in values for each pair of observations
- Example: Respiratory rates in premature infants
 - A study was conducted to examine the effects of the transition from fetal to postnatal circulation in premature infants
 - Respiratory rate was measured for each infant at two different times:
 <15 days old and >25 days old
 - We wish to compare the respiratory rates measured at two different times in the infants' development

Wilcoxon Signed-Rank Test

- Let Δ be the true median difference in measurements
- H_0 : $\Delta = 0$ vs H_A : $\Delta \neq 0$
- We first calculate the difference for each pair



Wilcoxon Signed-Rank Test

- We rank the absolute values of the differences from smallest to largest
- · Pairs for which the difference is 0 are not ranked
 - These pairs provide no information about which group has higher or lower values
 - Exclude these pairs and adjust the sample size accordingly
- Tied observations are assigned an average rank

diff 0	rank	diff -16	rank 10	Sign Test:
-1	1	-23	11.5	Simply compare
2	2	-23	11.5	the number of
3	3	-35	13	
-6	4	-36	14	positive signs to
7	5	-37	15	the expected
-8	6	-38	16	number under H_0
-12	7	-39	17	0
13	8	-40	18	
14	9			

Wilcoxon Signed-Rank Test

- Each rank is assigned a plus or a minus sign, depending on the sign of the difference
- Under the null hypothesis, the sum of the positive ranks should be comparable in magnitude to the sum of the negative ranks
- The statistic: the sum of the positive ranks, denoted by T
- We reject H₀ if T is either too big or too small
- If H₀ is true and sample size is large,

$$Z_T = \frac{T - \mu_T}{\sigma_T}$$

$$\mu_{\tau} = \frac{n(n+1)}{4}$$

$$\sigma_{\tau} = \sqrt{\frac{n(n+1)(2n+1)}{24}}$$

follows a N(0,1) distribution

Example

- The formula are slightly different when there are ties
- Back to the study on respiratory rates for premature infants (n=18)
- The sum of positive ranks:

• Since Z_{τ} <-1.96, we reject H_0 and conclude that the median difference is not equal to 0.

Example

- We test the supplement's effect on SBP by giving supplement to one sample and placebo to an independent sample.
- Data:
 - Sample 1 (supplement): 118, 148, 110, 120, 140
 - Sample 2 (placebo): 135, 116, 120, 145
- 1) combine samples into one group and order them
 - Ordered values: 110, 116, 118, 120, 120, 135, 140, 145, 148
- 2) Assign ranks from lowest to highest; assign average rank to tied values
 - Ranks: 1, 2, 3, 4.5, 4.5, 6, 7, 8, 9
- 3) Compute statistic
 - W = 2 + 4.5 + 6 + 8 = 20.5

Wilcoxon Rank Sum Test

- Analogous to the two-sample **unpaired** *t*-test
- Also called Mann-Whitney Test
- The null hypothesis being tested is that the median of the first population is equal to the median of the second population
- Like the signed-rank test, the rank sum test is performed on ranks rather than actual measurements

Wilcoxon Rank Sum Test

- H0: median in group 1 = median in group 2
- HA: median in group 1 ≠ median in group 2
- If H0 is true and sample size is large enough,

$$Z_W = \frac{W - \mu_W}{\sigma_W}$$

$$\mu_{W} = \frac{n_{S}(n_{S} + n_{L} + 1)}{2}$$

$$\sigma_{W} = \sqrt{\frac{n_{S}n_{L}(n_{S} + n_{L} + 1)}{12}}$$

follows a N(0,1) distribution

More Groups

- You may wish to comparing three or more populations without assuming that the underlying data are not normally distributed
- The Kruskal-Wallis Test
- Paired t-test → Wilcoxon Signed Rank Test
- Unpaired t-test → Wilcoxon Rank Sum Test
- ANOVA → Kruskal-Wallis Test

R programming

```
wilcox.test(x, y = NULL,
  alternative = c("two.sided", "less",
  "greater"), mu = 0, paired = FALSE,
  exact = NULL, correct = TRUE,
  conf.int = FALSE, conf.level = 0.95, ...)
```